Parallel Acceleration Scheme for Monte Carlo Based SSTA Using Generalized STA Processing Element

نویسندگان

  • Hiroshi Yuasa
  • Hiroshi Tsutsui
  • Hiroyuki Ochi
  • Takashi Sato
چکیده

We propose a novel acceleration scheme for Monte Carlo based statistical static timing analysis (MC-SSTA). MC-SSTA, which repeatedly executes ordinary STA using a set of randomly generated gate delay samples, is widely accepted as an accuracy reference. A large number of random samples, however, should be processed to obtain accurate delay distributions, and software implementation of MC-SSTA, therefore, takes an impractically long processing time. In our approach, a generalized hardware module, the STA processing element (STA-PE), is used for the delay evaluation of a logic gate, and netlist-specific information is delivered in the form of instructions from an SRAM. Multiple STA-PEs can be implemented for parallel processing, while a larger netlist can be handled if only a larger SRAM area is available. The proposed scheme is successfully implemented on Altera’s Arria II GX EP2AGX125EF35C4 device in which 26 STA-PEs and a 624-port Mersenne Twister-based random number generator run in parallel at a 116 MHz clock rate. A speedup of far more than ×10 is achieved compared to conventional methods including GPU implementation. key words: statistical static timing analysis, delay distribution, slew rate, field-programmable gate array, Mersenne Twister

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Criticality Aware Latin Hypercube Sampling for Efficient Statistical Timing Analysis

Process variation is a major concern in the semiconductor industry today. Probabilistic statistical static timing analysis (SSTA), where random variables are used to represent arrival times, has been proposed as a method to address this challenge. However, there are a number of modeling and accuracy difficulties associated with probabilistic SSTA analysis and optimization methods, such as how t...

متن کامل

Statistical Moment Estimation of Delay and Power in Circuit Simulation

Monte Carlo methods and simulation are often used to estimate the mean, variance, and higher order statistical moments of circuit properties like delay and power. The main issues with Monte Carlo methods are the required long run time and the need for prior detailed knowledge of the distribution of the variations. Additionally, most of available circuit simulation tools can run Monte Carlo anal...

متن کامل

An Approach in Radiation Therapy Treatment Planning: A Fast, GPU-Based Monte Carlo Method

Introduction: An accurate and fast radiation dose calculation is essential for successful radiation radiotherapy. The aim of this study was to implement a new graphic processing unit (GPU) based radiation therapy treatment planning for accurate and fast dose calculation in radiotherapy centers. Materials and Methods: A program was written for parallel runnin...

متن کامل

A Novel Source Convergence Acceleration Scheme for Monte Carlo Criticality Calculations, Part I: Theory

A novel technique for accelerating the convergence rate of the iterative power method for solving eigenvalue problems is presented. Smoothed Residual Acceleration (SRA) is based on a modification to the well known fixed-parameter extrapolation method for power iterations. In SRA the residual vector is passed through a low-pass filter before the extrapolation step. Filtering limits the extrapola...

متن کامل

Planar and SPECT Monte Carlo acceleration using a variance reduction technique in I131 imaging

Background: Various variance reduction techniques such as forced detection (FD) have been implemented in Monte Carlo (MC) simulation of nuclear medicine in an effort to decrease the simulation time while keeping accuracy. However most of these techniques still result in very long MC simulation times for being implemented into routine use. Materials and Methods: Convolution-based force...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IEICE Transactions

دوره 96-C  شماره 

صفحات  -

تاریخ انتشار 2013